Synthesis of tungsten oxide/electrochemical reduced titanium dioxide thin films on FTO substrates and its electrochromic-pseudocapacitive properties

<u>Roberta Irodia¹*</u>, Mihaela Vasilica Mîndroiu¹, Sorin Vizireanu² and Andrei Stoian¹ ^{1*}Department of General Chemistry, University POLITEHNICA of Bucharest, Faculty of Chemical Engineering and Biotechnologies, Romania, (<u>roberta.irodia@upb.ro</u>) ² National Institute for Laser, Plasma & Radiation Physics (INFLPR)

INTRODUCTION

Electrochromic (EC) materials have shown to be very beneficial for a variety of applications, including smart windows, large-area information displays, rear-view mirrors for automobiles, energy saving, and other similar applications. Titanium dioxide (TiO₂) and tungsten oxide (WO₃) have garnered a lot of interest as a two-component electrochromic inorganic material because they lead to local electronic states 0.7 eV below the conduction band. Moreover, the density of oxygen vacancies can be greatly increased by reducing TiO₂ nanostructures, which in turn improves electrical conductivity and charge transfer¹. Thus, in this work, we propose a straightforward synthetic approach to the fabrication of nanostructured WO₃/TiO₂ electrochemical reduced films on FTO electrodes, which exhibit superior optical and electrochromic properties.

EXPERIMENTAL/THEORETICAL STUDY

Nanoelectrodes made of WO₃/TiO_{2 el. red}/FTO (tungsten oxide/electrochemical reduced titanium dioxide/FTO) require three steps to complete. Electrochemical reduction at -20V for 30 seconds is performed on TiO₂ nanostructures generated by TiO₂ anodization of titanium films placed directly on FTO substrate through pulsed magnetron sputtering of pure titanium target (99.995%, Lesker). Finally, a WO₃ thin film is deposited using a solgel technique, and a new WO₃/TiO_{2 el. red}/FTO pseudocapacitive electrode is developed. Morphological features of surface-synthesised films are measured by atomic force microscopy (AFM), contact angle analysis (CA), and surface energy analysis, while optical properties are evaluated by UV-VIS spectroscopy. The electrochromic characteristics of a material are measured using cyclic voltammetry and chronoamperometry.

RESULTS AND DISCUSSION

UV-VIS spectroscopy is used to calculate the band gap value of the produced electrodes, and it was found that coating the TiO_2 el.red film with a thin layer of WO₃ can reduce the bandgap energy.

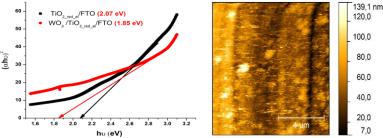


Fig. 1 Plot of $(\alpha h\nu)^2$ versus hv for band gap calculation and 2D AFM topography for obtained electrochromic electrodes WO₃/TiO_{2 el.red}. film uniformly covers FTO substrate, as evidenced by AFM data. To put it in perspective, the composite structures measuring 1 μ m in diameter and 400 nm in height are far larger than the point nanostructures at 100 nm in diameter.

CONCLUSION

New pseudocapacitive electrodes with enhanced electrochromic properties can be developed for use in smart window applications by depositing $WO_3/TiO_{2\,el.red}$ electrochromic thin films on FTO substrate with nanomorphology and low bandgap value.

REFERENCES

1. Z. Li et. al, Electrochim. Acta. 161, 40 (2015)

ACKNOWLEDGMENTS

This work was supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2021-0417, within PNCDI III