Scientific Report - Stage 2 (Period: 1 January - 31 December 2023)

The objectives of Phase 2 and the research results of the project PN-III-P1-1.1-TE-2021-0417 are as follows:

- Development of new cathodic nano-composite TiO₂rNSs- WO₃NSs thin films / FTO electrochromic / pseudocapacitive electrodes (part 2 - morphological characterisation by SEM, electrochemical and electrochromic).

New nano-composite cathode electrodes with the best electrochromic and pseudocapacitive properties were created using thin films made of TiO_2 and WO_3 nanostructures placed on FTO substrates, as shown in the table below:

Cathode electrodes/	Band gap	Charge transfer	Density of	Optical	Response time, (s)	
Parameters	energy,	resistance, (Ω)	load	modulations	bleaching	coloring
	(eV)		carriers, N _d	$\Delta T = T_d \text{-} T_c,$	(t _d)	(t _c)
				(%)		
WO ₃ NP/TiO ₂ rNS _{_dip_coat}	2,82	145	1,00*1018	41,24	5	4
WO3NP/TiO2rNS_mag_sputt	1,85	61,4	$1,72*10^{20}$	49,39	3	2,4
WO3NF/TiO2rNS_dip_coat	2,96	1480	7,23*1017	75,41	4	3,5
WO3NF/TiO2rNS_mag_sputt	3,01	2740	5,71*10 ¹⁷	48,85	4	5,5

- Developing new nano-hybrid anode electrodes using PPyNSs- and PEDOT:PSS-deposited thin films on an FTO substrate as a basis for TiO₂rNSs.

With the characteristics listed below, the following novel doped nano-hybrid anodic electrodes were created and are listed in the following table:

Anode electrodes/ Parameters	Band gap	Density of load	Optical modulations	
	energy, (eV)	carriers, N _d	$\Delta T = T_d - T_c, (\%)$	
PPyI/C/TiO2rNS/FTO	3,13	-1,86E+18	20,3	
PPyI/QDs/TiO2rNS/FTO	3,17	-1,58E+18	22,5	
PPyII/C/TiO2rNS/FTO	3,17	-1,21E+18	16	
PPyII/QDs/TiO2rNS/FTO	3,23	-1,04E+18	21	
PEDOT:PSS/C/TiO2rNS/FTO	3,12	-1,58E+18	46	

For usage in creating anode electrodes for smart window applications, all hybrid polymer films doped with either C or QDs that were produced by electrochemical, electrospinning, or spin-coating techniques, respectively, show acceptable pseudocapacitive and electrochemical characteristics.

- Obtaining biopolymer electrolytes with high ionic conductivity by doping DNA with $Li^{\scriptscriptstyle +}$ or $Zn^{2\scriptscriptstyle +}$ ions.

The highest values of ionic conductivity were obtained for DNA-based biopolymer electrolytes doped with 1 wt% PL (Film B) and doped with 2 wt% SZ (Film G), respectively.

Results dissemination:

- 1 ISI Q1 article published in Materials, 16 April 2023, 16, 3147. https://doi.org/10.3390/ma16083147;

- 1 ISI 01 article accepted in Materials, 29 November 2023, 16, x. https://doi.org/10.3390/xxxxx;
- Participation in 2 International Conferences with 3 scientific papers;
- 1 published patent application: nr. RO137718 (A0), 2023-10-30.